Global properties of circumgalactic medium at high-redshift: spectroscopic study of strong Lyman-α forest absorbers

Debopam Som

Laboratoire d'Astrophysique de Marseille/Aix-Marseille Université

with: Matthew Pieri et al.

Different QSO absorbers:

- Lyman- α forest: N(HI) < 10^{17.2} cm⁻².
- Lyman Limit systems: $10^{17.2}$ cm⁻² < N(HI) < 10^{19} cm⁻².

Sub-damped Ly-α systems (sub-DLAs):
 10¹⁹ cm⁻² < N(HI) < 10^{20.3} cm⁻².

• Damped Ly- α systems (DLAs): N(HI) > 10^{20.3} cm⁻².

4

BLENDED HIAS A PROXY FOR CGM

 Lyman α absorbers around galaxies are blended on SDSS resolution scales (Rakic et al. 2012, Turner et al 2014) ...

... have 10^{14.5}<N_{HI}<10^{16.5} 100-300 kpc scales (Rudie et al. 2012) ...

Galaxies (identified) in Absorption

- LBGs near bright quasar sightlines: VLT LBGs (Crighton et al 2011), subset of KBSS (Rudie et al 2012)
- O Compare by matching BOSS resolution and binning

Galaxies (identified) in Absorption

Cross-correlating the strong Lyman-α sample with SDSS DR14 (eBOSS)
 Lyman-α forest indicates bias ~ 2 (more in the talk by Michael Blomqvist)

Baryon Oscillation Spectroscopic Survey

O I of 4 in SDSS-III 2009-2014
O I0k deg²
O Goal: I.6M galaxies and ~160k forest quasars
O Resolution R = 2000

DRI2 with I58k QSOs

absorber of interest and stacked to see any metals available

(Pieri+ 2010b; SDSS II data)

The entire spectrum shifted to the rest-frame of the Lyman α forest absorber of interest and stacked to see any metals available

(Pieri+ 2010b; SDSS II data)

The entire spectrum shifted to the rest-frame of the Lyman α forest absorber of interest and stacked to see any metals available

(Pieri+ 2010b; SDSS II data)

The entire spectrum shifted to the rest-frame of the Lyman α forest absorber of interest and stacked to see any metals available

(Pieri+ 2010b; SDSS II data)

Composite Spectrum of Lyman & Forest Absorbers using BOSS Quasars

Composite Spectrum of Lyman & Forest Absorbers using BOSS Quasars

Complications due to the presence of unsaturated non-dominant absorption along with saturated dominant absorption in lower order Lyman-series lines.

This effect should disappear in higher order Lyman-series lines

D. Som - img-inter@Marseille - 10/07/2018

16

D. Som - img-inter@Marseille - 10/07/2018

16

D. Som - img-inter@Marseille - 10/07/2018 **Compared with Simple Models** CIII Si IV Si III Al III CII Al II Si II Fe II Mg II O I O VI N X 14 図 Column density 12 $\log N$ 10 8 [-0.05, 0.050)Lower ionization potential \longrightarrow Each model constrained by measured N(H I), solar abundance, UV background @ $z \sim 2.7$

D. Som - img-inter@Marseille - 10/07/2018 **Compared with Simple Models** CIII SI IV SI III ALIII CII ALII SI II FE II Mg II OI O VI N × 14 Column density 12 $\log N$ 10 8 [-0.05, 0.050)Lower ionization potential \longrightarrow Each model constrained by measured N(H I), solar abundance, UV background @ $z \sim 2.7$

D. Som - img-inter@Marseille - 10/07/2018 **Compared with Simple Models** CIII Si IV Si III Al III CII Al II Si II Fe II Mg II O I O VI NV CIV × 14 Column density 12 $\log N$ 10 8 [-0.05, 0.050)Lower ionization potential \longrightarrow Each model constrained by measured N(H I), solar abundance, UV background @ $z \sim 2.7$

D. Som - img-inter@Marseille - 10/07/2018 **Compared with Simple Models** CIII SI IV SI III Al III CII Al II SI II Fe II Mg II O I O VI NV CIV × [X/H] ~ -0.5 14 ~100 pc Column density scale Ŕ 12 clumping log N 10 8 [-0.05, 0.050)Lower ionization potential \longrightarrow Each model constrained by measured N(H I), solar abundance, UV background @ $z \sim 2.7$

Compared with a Simple Multi-phase Model

Going beyond the composite: Si II absorber populations

- Populations are forward modelled
- Neighbouring pixels used as null sample
- Mean composite treated as metal target

Si II sample well-modelled by $\frac{20\%}{20\%}$ population with absorption $\frac{5 x}{20\%}$ mean (with a Gaussian scatter) and nothing elsewhere.

[•] Som, Pieri et al., in prep.

Going beyond the composite: Si III absorber populations

- Populations are forward modelled
- Neighbouring pixels used as null sample
- Mean composite treated as metal target

Si III sample matched by <u>20%</u> population 3.4 x stronger than mean. The remaining 80% also enriched.

• Som, Pieri et al., in prep.

Going beyond the composite: Si IV absorber populations

- Populations are forward modelled
- Neighbouring pixels used as null sample
- Mean composite treated as metal target

Si IV sample well matched by 20% population 3.2 x stronger than mean. The remaining 80% also enriched.

• Som, Pieri et al., in prep.

- Strong Lyman α forest lines arising in CGM regions show clustering
- Clustered strong Lyman α forest lines are blended in BOSS spectra: appropriate selection of flux decrement in BOSS spectra picks out CGM tracers (more in talks by Michael Blomqvist and Mat Pieri)
- Stacking CGM tracers retrieve the metal signal associated with the CGM regions: power of large numbers

 The picture emerging is of a clumpy, multi-phase CGM: dense, metal-rich clumps <100pc + gas at higher ionisation

