Measuring large-scale UV background inhomogeneities with the HeII forest and metals

Sean Morrison¹ Mat Pieri¹, David Syphers,² & Tae-Sun Kim³

¹Laboratoire d'Astrophysique de Marseille, Université d'Aix-Marseille, ²Eastern Washington University, ³University of Wisconsin-Madison

Intergalactic Interconnections 12 July 2018

UV Background Shape & Intensity

- HI and HeII reionization
- Quasar population, galaxy population
- Traced using various ionization species

Gunn-Peterson Trough in HE2347-4342

$\eta:$ The Ratio of HeII to HI

- $\eta = \frac{N_{\rm He\,II}}{N_{\rm H\,I}} \approx \frac{4 \tau_{\rm He\,II}}{\tau_{\rm H\,I}}$
 - Density independent
 - Large η : soft radiation
 - Small η : hard radiation
 - η sensitive on

Mpc scales to the locations of transverse quasars smaller scales to thermal broadening, galactic outflows, and proximity to local galaxies

Measuring η

Measuring η on Large Scales

- Measuring He Ly- α to H Ly- α ($\eta)$ ratio smoothed on >1 Mpc scales.
- Data from Hubble COS (for He) and UVES/HIRES (H)

2

Measuring Metals in the IGM

- Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)
- A example (simulated) Ly-α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Sean Morrison (LAM)

Inhomogeneities in the UV Background

Aix^{*}Marseille

Measuring Metals in the IGM

- Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)
- A example (simulated) Ly-α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Inhomogeneities in the UV Background

Aix^{*}Marseille

Measuring Metals in the IGM

- Pixel Optical Depth Techniques (Songaila et al. 1995; Schaye et al. 2003)
- A example (simulated) Ly- α forest in a quasar spectrum with an OVI forest (5 times ionized oxygen)

Inhomogeneities in the UV Background

Aix^{*}Marseille

POD in the Gunn-Peterson Trough: O VI

POD in the Gunn-Peterson Trough: C IV

Inhomogeneities in the UV Background

POD in the Gunn-Peterson Trough: Si IV

UVB Soft/Hard Split: Raw POD

Statistical measurement of O VI absorption cut by high/low η .

Aix*Marseille LAM

Soft/Hard Split as a Function of Scale: $O\,\rm VI$

Aix*Marseille

Soft/Hard Split as a Function of Scale: C IV

Soft/Hard Split as a Function of Scale: Si ${\rm IV}$

Variable Soft/Hard Splits in O_{VI}

Inhomogeneities in the UV Background

- Difference in Metal (O VI & C IV) Column Densities in and out of Gunn-Peterson Trough
- Seems to supports claim that η actually probes large scale effects rather than just noise (which has been source of controversy)
- (Potential) future work:
 - Comparison with simulations
 - $\bullet~$ Better S/N UV data for additional He ${\rm II}$ Quasars
 - Quasars positions in large surveys