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The CGM of galaxies: next frontier for models

Simulations consistently predict the presence of strong Hl
absorption in the surroundings of galaxies
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Observations at Iow redshlft also show that absorbers with
log Nni>15 are typically found in the CGM of galaxies, while
lower N(HI) absorbers are not (at least at low redshift).

Shen et al. 2013
Stewart et al. 2011
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Faucher-Giguére et al. 2011




Metallicity is a key property of the CGM gas
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Fumagalli+ (2011)

4+ We can use the metallicity of the cool gas probed by LLSs as a “tracer” of the origins of
the gas.

4+ We can use the strength of the HI absorption as a direct probe of the galaxies and their
environment.

4+ We can directly test simulations using [X/H] vs Ny plots at different redshifts.




A map of the gas-metallicity of the universe

Metallicity - HI Column Density Plot
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The COS CGM Compendium

SLFSs:15 < |Og NH| <16.2
pLLSs:16.2 < log Ny <17.2
LLSs: 17.2 < log N1 <19
SLLSs: 19 < log Nui < 20.3
DLAs: 20.3 < |Og Nh




The COS CGM Compendium

Goal: Determining the metallicity of HI-selected absorbers with 15<log Ny <19 at z<1

A shot in the dark using absorbers
known to probe the denser regions of

the universe at the IGM/galaxy interface
(i.e., the CGM).

Metallicity distribution in the pre-COS era

SLFSs:15 < log Ny <16.2
pLLSs:16.2 < log Ny <17.2
LLSs: 17.2 < log Ny <19
SLLSs: 19 < log N < 20.3
DLAs: 20.3 < log Ny
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6 pLLS/LLS metallicities determined in pre-COS era
Zonak+04, Jenkins+05, Prochaska+04,05, Cooksey+08, Lehner+09



The CCC sample: 263 absorbers

® SLFSs:15 <log Ny <16.2: 152
® pLLSs:16.2 <log Ny <17.2: 82
® LLSs: 17.2 < log Ny <19: 29

COS G130M/G160M
® Literature (COS, STIS)
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Lehner+18a, submitted



CCC empirical results: Mgll vs. HI

® SLFSs:15 <log Ny <16.2: 152
® pLLSs:16.2 <log Ny <17.2: 82
® LLSs: 17.2 < log Ny <19: 29
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Lehner+18a, submitted



An example: from data to a metallicity PDF

J044011.90-524818.0 z=0.614962

B ® SLFSs, pLLSs, and LLSs are
all strongly ionized and
' therefore an ionization
et 1 correction is needed to

determine the metallicity.

e Use only low (CII, Sill, Mgll)
g and intermediate ions (e.g.,
} | @) N9} Clll, Oll) to model the

| IS phototionization.

* C/a is allowed to vary.

J044011.89-524818.0, z=0.61496

e Adopt EUVB HMO5
Galaxies+QSOs (HM12)
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e Use Bayesian MCMC
formalism (from
Fumagalli+16) to model the
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lonization.
e Output: posterior PDFs.

Wotta+18, in prep



Effects of the EUVB on the metallicity

1

On average, <[X/H]um12>=<[X/H]ximos>+0.37

—1
[ X/H]nios

Wotta+18, in prep (see also Wotta+16)



Etfect of the EUVB: CCC vs. COS-Halos

Note:
COS-
Halos
redshifts

@ CCC z<0.3 often
@® COS-Halos HM12 outside

our search
range.

Lehner+18b, in prep COS-Halos: Remodeled from Prochaska+17



Etfect of the EUVB: CCC vs. COS-Halos

@ CCCz<0.3
@® COS-Halos HMO05

17

log Ny [Cm-z]

Lehner+18b, in prep



Some of the key science results from CCC



Results: Metallicity PDFs of the pLLSs and LLSs at z<

82 pLLSs
16.2 < log Ny < 17. 2

29 LLSs
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Result: Metallicity PDFs of the SLFSs at z<1

152 SLFSs
15.0< logNHI < 16.2
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Wotta+18, Lehner+18b, in prep



Result: Metallicity PDFs of the SLFSs and pLLSs at z<1

152 SLFSs
82 pLLSs
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Wotta+18, Lehner+18b, in prep



Result: Evolution of the metallicity with Ny

DLAs: new compilation from 3 papers: Rafelski+12, Lehner+13, Quiret+16
SLLSs: only Hi-selected SLLSs from literature (Tripp+05; Battisti+12; Crighton+13; Quiret+16)

Wotta+18a, Lehner+18, in prep



Summary |

18 19

log Nyy [em”]

® There is a an evolution of the metallicity with Ny

® There is a large reservoir of metal-poor cool gas in the dense ionized medium of
the universe probed by SLFSs, pLLSs, and LLSs.

® No strong evidence of pristine gas at z<1, but some gas hasn’t been enriched much
since z~2-3 (see Lehner+16, Fumagalli+16, Simcoe+04).

® Some redshift dependence for the metallicities.




Observations meet with simulations



FIRE Simulations vs. CCC

Low-Redshift Lyman Limit Systems as Diagnostics of
Cosmological Inflows and Outflows MNRAS, 2017

Zachary Hafen,'x Claude-André Faucher-Giguere,! Daniel Anglés-Alcdzar,! Dusan
Keres,? Robert Feldmann,® T. K. Chan,? Eliot Quataert,®> Norman Murray,* Philip
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FIRE Simulations vs. CCC

CCC

FIRE sim.

SLFS pLLS LLS
2z 1

Lehner+18b, Wotta+18 in prep



FIRE Simulations vs. CCC
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EAGLE Simulations vs. CCC

The metallicity distribution of HI systems in the EAGLE

cosmological simulation MNRAS, 2018

Alireza Rahmati!, Benjamin D. Oppenheimer?*

1 Institute for Computational Science, University of Zirich, Winterthurerstrasse 190, CH-8057 Ziirich, Switzerland
2CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309, USA

LLS: (AZ)=-0.23 (AZIZ)I""Z:IO.BI
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EAGLE Simulations vs. CCC




EAGLE vs. FIRE

i mmes EAGLE sim.

- FIRE sim.

pLLS LLS
z<1




Summary |l

82 pLLSs z ) 29 LLSs
FIRE sim., pLLSs FIRE sim., LLSs
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® The FIRE simulations under-predict the amount of low-metallicity gas probed by the
15<log Npi<19 absorbers.

® The EAGLE simulations produce a similar fraction of low-metallicity SLFSs, pLLSs,
and LLSs. This is driven by a strong evolution of the metallicities of these absorbers
between z~0 and 1, which is not observed in the CCC survey.

® The metallicity PDFs of the 15<log Nyi<22 absorbers are nearly identical in the FIRE
and EAGLE simulations.
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® QOur Large KODIAQ survey is underway.
® \We will study the evolution of the metallicity of the absorbers with 15<log NHI<19

over cosmic time.




Coming soon: Galaxies!

[X/H], s=-2.40

J1435+3604

KCWI [O II] narrow-band image for z=0.373

zgai=0.7293 :
Av=24 km/s ‘
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%ga [X/H], s=-0.67
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MUSE+ ACS

LLS host

® How do the properties (metallicity, but also N(OVI), etc.) of the LLSs correlate
with properties of the galaxies?




Summary

® Metal-enriched inflows and outflows are quite common at low redshift.

® There is a large reservoir of metal-poor cool gas in the dense ionized medium of
the universe probed by pLLSs and LLSs at all z that may eventually accrete onto

galaxies.

® Strength in numbers: large archives are changing the game! Thanks to COS, we
went from samples that had less than handful of LLSs to samples of 30-60 at z<1.
We have now a sample of nearly 300 absorbers at z<1 and will reach similar size
sample z>2 in the near future with our KODIAQ database.

e With large surveys of CGM absorbers combined with MUSE & KCWI observations
of their environments, we will have the 2nd CGM revolution.



