Probing the Two Epochs of Reionization in Absorption: Status and Issues

Gábor Worseck

Intergalactic Interconnections

Marseille, July 9-13, 2018

Reionization Events – Two Baryonic Phase Transitions

Credits: NASA, ESA, and A. Feild (STScI)

Probing the Two Epochs of Reionization in Absorption

Sources of the UV Background

Star-forming galaxies

- High space density
- Small (?) escape fraction
- Soft UV radiation

Quasars

- Low space density
- Unity (?) escape fraction
- Hard UV radiation

Emissivity of Quasars and Star-Forming Galaxies

Star-forming galaxies

• Lyman limit emissivity

$$\epsilon_{
u,912} = rac{f_{
m esc}}{f_{
u,912}} f_{
u,012} / f_{
u,01} / f_{
u,012} / f_{
u$$

•
$$\epsilon_{\nu}(\nu) = \epsilon_{\nu,912} \times ?$$

Quasars

• Lyman limit emissivity

$$\epsilon_{
u,912} = f_{
u,912}/f_{
u,UV} \ imes \epsilon_{
u,UV} \, (> L_{UV,min}, z)$$

•
$$\epsilon_{\nu}\left(\nu\right) = \epsilon_{\nu,912} \left(\nu/\nu_{912}\right)^{lpha}$$

The HI UV Background

- Method 1: Adjust H ι photoionization rate in optically thin numerical simulation until Lyα effective optical depth matches observations
- Method 2: Quasar proximity effect
- Comparison to UV background synthesis models based on source population and IGM absorber model

 \rightarrow Quasars+galaxies needed to explain $\Gamma_{HI} \simeq$ const at z = 3-5

G. Worseck (Potsdam)

Probing the Two Epochs of Reionization in Absorption

The High-Redshift Photon Underproduction Crisis

- Strong redshift evolution of Lyman continuum escape fraction required to explain inferred H I UV background at z > 3!
- $z\sim3$: $f_{
 m esc}\lesssim {
 m few}$ % (but see Steidel et al. 2018)
- Source population for H reionization not well constrained

The H I Reionization History

• Rest-frame stacks of QSO spectra $\rightarrow \lambda_{mfp}(z) = 37 \left(\frac{1+z}{5}\right)^{-5.4} pMpc$

Madau 2017: Modified reionization eq. to account for residual H I

$$\frac{\mathrm{d}Q_{\mathrm{HII}}}{\mathrm{d}t} = \frac{\langle \dot{n}_{\mathrm{ion}} \rangle}{\langle n_{\mathrm{H}} \rangle} \left(\frac{1}{1 + \frac{1}{\lambda_{\mathrm{mfp}} \langle n_{\mathrm{H}} \rangle (1 - Q_{\mathrm{HII}})\sigma_{\mathrm{HI}}}} \right) - \frac{Q_{\mathrm{HII}}}{\langle t_{\mathrm{rec}} \rangle}$$

• Madau 2017: $\langle \dot{n}_{ion} \rangle / \langle n_{H} \rangle = 2.9$ /Gyr fits observational constraints (Ly α forest, IGM damping wings, Planck, Ly α emitter fraction)

Quasar Sightlines Probe the Reionization Epochs

Becker, Bolton & Lidz (2015)

Scatter in H I Ly α Effective Optical Depth

- H I Ly α scattering optical depth $\tau(z) \simeq 3.85 \times 10^5 \langle x_{\text{HI}} \rangle \left(\frac{1+z}{7}\right)^{3/2}$
- $z \sim 6$: $\tau_{\text{eff}} = -\ln \langle e^{-\tau} \rangle \gtrsim 6$ $\longrightarrow x_{\text{HI}} = n_{\text{HI}}/n_{\text{H}} \gtrsim 10^{-4}$
- τ_{eff} scatter larger than expected from density field (r = 50/h cMpc) $\longrightarrow \langle x_{\text{HI}} \rangle$ variations (factor $\gtrsim 3$) \longrightarrow UV background fluctuations

Statistical Description

- Cumulative distribution of $\tau_{\rm eff}$ among sightlines
- Statistical comparison to simulations
 - \longrightarrow Constrain models
- Realistic mock data from simulations required

Potential Explanations for the Large $au_{\rm eff}$ Scatter

- Temperature fluctuations after patchy reionization (D'Aloisio et al. 2015)
- 2 UV background fluctuations due to spatially varying λ_{mfp} (Davies & Furlanetto 2016, D'Alaisia et al. 2010)

D'Aloisio et al. 2018)

- UV background fluctuations due to rare UV sources / QSOs (Chardin et al. 2015, 2017)
 - Predictions for GP troughs:
 - T fluct.: Cooling overdensities
 - Γ_{HI} fluct.: Voids with $\lambda_{mfp} \rightarrow 0$
 - QSOs: Range of densities

Evidence for UV Background Fluctuations: Underdensity of Ly α Emitters near GP Trough

- Survey for Ly α emitters near $z \simeq 5.7$ GP trough
- Underdensity of Ly α emitters at R < 20/h cMpc $(P_{random} = 3 \times 10^{-5})$

Davies et al. (2018), Becker et al. (2018)

More Data – More Puzzles

- Bosman et al. (2018): $\tau_{\rm eff}$ measurements in 62 $z_{\rm em}$ > 5.7 QSOs
- Treatment of non-detections: 2σ upper limit of transmission or $\tau_{\rm eff} \to \infty$ for all non-detections
- Comparison to forward-modeled simulations \rightarrow No considered model matches data at z > 5.2
- Eilers et al.: Different results on largely the same data

IGM Damping Wing: Significant H I Fraction at $z \gtrsim 7$

- Significantly neutral IGM \longrightarrow IGM damping wing in QSO spectra
- Davies et al. 2018: Seminumerical sim. of reion. topology + 1D radiative transfer through high-res. sim.
 - \longrightarrow Model IGM damping wing including biased QSO halos, proximity effect and QSO lifetime
 - + Modeling of uncertain QSO continuum
 - \longrightarrow Joint constraints on x_{HI} and QSO lifetime

Probing the Two Epochs of Reionization in Absorption

Cosmic Reionization Ends at $z \sim 3!$

Credits: NASA, ESA, and A. Feild (STScI)

Probing the Two Epochs of Reionization in Absorption

Simulations: He III Bubbles around Quasars

- Semi-analytic models and radiative transfer simulations
- Prediction: Inhomogeneous and extended He II reionization (\sim 1Gyr, 3 \lesssim *z* \lesssim 4)

McQuinn et al. (2009)

Handful of Historic He II Sightlines: $z_{reion} \sim 3$

- Direct tracer of He II reionization: He II Ly α ($\lambda_{rest} = 303.78$ Å) analogous to H I Ly α at $z \sim 6$
- Before GALEX: Blind surveys for UV-bright quasars
- Until 2009: 5 sightlines (HST/STIS, FUSE)
- Main features:
 - Gunn-Peterson trough at z > 3
 - Patchy He II absorption at 2.7 < z < 3</p>
 - He II Ly α forest at z < 2.7

• He III zones around quasars

The GALEX + HST/COS Revolution

- GALEX: Pre-selection of UV-transparent quasar sightlines
- Dedicated survey for UV-bright quasars (2–3 m tel.)
- HST/COS follow-up spectroscopy
- 22 new science-grade He II sightlines → First statistical sample
- Helium Reionization Survey (HERS): Homogeneous reduction and analysis (Worseck et al. 2016, 2018)

Probing the Two Epochs of Reionization in Absorption

Fluctuating Ly α Absorption

Far UV: He II at $z \sim 3.5$

Probing the Two Epochs of Reionization in Absorption

He II Transmission Spikes at $z\sim 3.5$

- Unexpected based on handful of pre-COS He II spectra
- Disagreement with quasar-driven He II reionization models predicting ubiquitous Gunn-Peterson troughs at z > 3

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM
- 2.7 $\lesssim z \lesssim$ 3: Gradual increase & scatter

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM
- 2.7 \lesssim *z* \lesssim 3: Gradual increase & scatter

 \rightarrow fluctuating UV background, $z_{reion} \simeq 2.7$

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM
- 2.7 \lesssim *z* \lesssim 3: Gradual increase & scatter

 \rightarrow fluctuating UV background, $z_{reion} \simeq 2.7$

• $z \sim 3.2$: Low effective optical depths, gradual He II reionization

- Measurements: He II effective optical depth on \sim 40 cMpc
- $z \lesssim 2.7$: Agreement with numerical simulation of photoionized IGM
- 2.7 \lesssim *z* \lesssim 3: Gradual increase & scatter

 \rightarrow fluctuating UV background, $z_{reion} \simeq 2.7$

- $z \sim 3.2$: Low effective optical depths, gradual He II reionization
- $z \sim 3.6$: One third of the IGM consistent with $\sim 1\%$ He II fraction \rightarrow He II reionization well underway at $z \sim 4$

The He II-Ionizing Background Fluctuates at z > 2.74

- Forward-model He II spectra for grid in $\Gamma_{\text{HeII}} = \text{const.}$
 - ▶ 100/h Mpc 4096³ Eulerian hydrodyn. sim. (Nyx; Lukić et al. 2015)
 - Realistic mock He II spectra, redshift subsamples
- z > 2.74: τ_{eff} scatter exceeds expectations for Γ_{HeII} = const.
 → He II-ionizing background fluctuates at z > 2.74
 → Standard UV background spectra only applicable at z < 2.7

UV Background Fluctuations at the End of He II Reion.

Probing the Two Epochs of Reionization in Absorption

The Evolution of the He II Photoionization Rate

• Match mock and observed median effective optical depth \rightarrow Median Γ_{HeII} drops by factor 5 between z = 2.6 and z = 3.1

Worseck et al. (2018)

Implications for HeII-Reionizing Source Population

- He II reionization in progress at $z \sim 4$ and ends at $z \simeq 2.7$
- Tension with reionization models with rapidly evolving quasar emissivity
- Exotic sources
 - X-ray binaries?
 - Thermal emission from shock-heated gas?
- Reassessment of z < 7.5 quasar luminosity function
- Homogenized sample from credible quasar surveys (*z*_{spec}, selection function)

The He II Reionization History

- Reionization equation $\frac{\mathrm{d}Q_{\mathrm{HeIII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ion}}}{\langle n_{\mathrm{He}} \rangle} - \frac{Q_{\mathrm{HeIII}}}{\langle t_{\mathrm{fec,He}} \rangle}$
- Emission rate given by QSO luminosity function and SED

The He II Reionization History

- Reionization equation $\frac{\mathrm{d}Q_{\mathrm{HeIII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ion}}}{\langle n_{\mathrm{He}} \rangle} \frac{Q_{\mathrm{HeIII}}}{\langle t_{\mathrm{rec,He}} \rangle}$
- Emission rate given by QSO luminosity function and SED
- Vanilla model: $z_{\rm reion} \simeq 3.5$ for $M_{1450} < -18$

The He II Reionization History

- Reionization equation $\frac{\mathrm{d}Q_{\mathrm{HeIII}}}{\mathrm{d}t} = \frac{\dot{n}_{\mathrm{ion}}}{\langle n_{\mathrm{He}} \rangle} - \frac{Q_{\mathrm{HeIII}}}{\langle t_{\mathrm{rec}} | \mathrm{He} \rangle}$
- Emission rate given by QSO luminosity function and SED
- Vanilla model: $z_{\rm reion} \simeq 3.5$ for $M_{1450} < -18$
- But: End of reionization delayed by Lyman limit systems (Bolton et al. 2009, Madau 2017)
- $Q \rightarrow 1$ overestimates z_{reion}

The HeII Reionization History: Parameter Variations

Harder SED

 $(\alpha_{\nu} = -1.4$, Stevans et al. 2014) $\longrightarrow z_{reion} \simeq 3.9$ for $M_{1450} < -18$

- Other parameter choices:
 - ► Fainter AGN (*M*₁₄₅₀ > −18)
 - Luminosity-dependent fesc
 - Clumping factor evolution
- Radiative transfer simulations of HeII reionization are needed

- ✓ Statistical samples of QSO sightlines probing H I and He II reion.
- ✓ Variance in $\tau_{\rm eff}$ on scales of tens of Mpc
- Comparison to simple models
 - \longrightarrow UV background fluctuations at tail end of extended reionization
- ✓ H I damping wings & demise of Ly α emitters
 - \longrightarrow Ongoing H $\scriptstyle I$ reionization at $z\simeq7$

- ✓ Statistical samples of QSO sightlines probing H I and He II reion.
- ✓ Variance in $\tau_{\rm eff}$ on scales of tens of Mpc
- Comparison to simple models
 - \longrightarrow UV background fluctuations at tail end of extended reionization
- ✓ H I damping wings & demise of Ly α emitters

 \longrightarrow Ongoing H $\scriptstyle I$ reionization at $z\simeq7$

X Large-scale radiative transfer simulations (QSOs)

- ✓ Statistical samples of QSO sightlines probing H I and He II reion.
- ✓ Variance in $\tau_{\rm eff}$ on scales of tens of Mpc
- Comparison to simple models
 - \longrightarrow UV background fluctuations at tail end of extended reionization
- ✓ H I damping wings & demise of Ly α emitters
 - \longrightarrow Ongoing H $\scriptstyle I$ reionization at $z\simeq7$
- X Large-scale radiative transfer simulations (QSOs)
- X Comparisons from different instruments to assess systematics
- Forward modeling of simulations at systematics limit of data, interpretation of heterogeneous data sets

- ✓ Statistical samples of QSO sightlines probing H I and He II reion.
- ✓ Variance in $\tau_{\rm eff}$ on scales of tens of Mpc
- Comparison to simple models
 - \longrightarrow UV background fluctuations at tail end of extended reionization
- ✓ H I damping wings & demise of Ly α emitters

 \longrightarrow Ongoing H $\scriptstyle I$ reionization at $z\simeq7$

- X Large-scale radiative transfer simulations (QSOs)
- X Comparisons from different instruments to assess systematics
- Forward modeling of simulations at systematics limit of data, interpretation of heterogeneous data sets
- X QSO emissivity: Comprehensive surveys for faint AGN at z > 2.2
- X Galaxy emissivity: f_{esc} distribution, phys. explanation for $f_{esc}(z)$

- ✓ Statistical samples of QSO sightlines probing H I and He II reion.
- ✓ Variance in $\tau_{\rm eff}$ on scales of tens of Mpc
- Comparison to simple models
 - \longrightarrow UV background fluctuations at tail end of extended reionization
- ✓ H I damping wings & demise of Ly α emitters

 \longrightarrow Ongoing H $\scriptstyle I$ reionization at $z\simeq7$

- X Large-scale radiative transfer simulations (QSOs)
- X Comparisons from different instruments to assess systematics
- Forward modeling of simulations at systematics limit of data, interpretation of heterogeneous data sets
- X QSO emissivity: Comprehensive surveys for faint AGN at z > 2.2
- X Galaxy emissivity: f_{esc} distribution, phys. explanation for $f_{esc}(z)$
- VUVB modeling: Variance in SED during He II reion., uncertainties & assumptions after reion.