Gas contents of the local Universe from Sunyaev-Zel'dovich effect

Seunghwan Lim (5th-yr @ UMass)

(main collaborators: Houjun Mo, Huiyuan Wang, Xiaohu Yang)

hot gas constrains galaxy model

- when dark matter halo forms,
 - baryons (cold gas) also falls into the potential.
 - \rightarrow 'belief': baryon fraction = cosmic mean fraction...
 - \rightarrow meanwhile, virial-shock heats cold gas to form hot gas halo
- If nothing further happens, all baryons will be found in hot gas..
 reality, however: cooling, SF, feedbacks...
 - Thus, hot gas can constrain galaxy models.

Is the hot gas where missing baryons are ?

CMB spectrum traces hot gas

there are two types of SZE

• thermal SZ effect (tSZE; due to thermal motion of electrons)

$$\left(\frac{\Delta T}{T_{\rm CMB}}\right)_{\rm tSZ}(\hat{r}) = g(x)y_{\rm tSZ}(\hat{r}) \equiv g(x)\frac{\sigma_{\rm T}}{m_{\rm e}c^2}\int P_{\rm e}{\rm d}l,$$

$$P_{\rm e} = n_{\rm e} k_{\rm B} T_{\rm e}$$
 is electron pressure

kinetic SZ effect (kSZE; due to bulk motion of electrons)

$$k(\hat{\boldsymbol{r}}) \equiv \left(\frac{\Delta T}{T_{\rm CMB}}\right)_{\rm kSZ} (\hat{\boldsymbol{r}}) = -\frac{\sigma_{\rm T}}{c} \int n_{\rm e} (\boldsymbol{v} \cdot \hat{\boldsymbol{r}}) \mathrm{d}l,$$

this talk is based on 4 papers:

Lim et al. (2017b) Galaxy groups in the low-redshift Universe

Lim et al. (2018a) Gas contents of galaxy groups from thermal Sunyaev-Zeldovich effects

Lim et al. (2017c) The detection of missing baryons in galaxy halos with kinetic Sunyaev-Zeldovich effect

Lim et al. (2018b) Exploring the thermal energy contents of the intergalactic medium with the Sunyaev-Zeldovich effect

Gas in halos from SZE

(Lim et al. 2017b,c; 2018a)

halos are from all-sky group catalog of Lim+17b

SZE can probe gas contents in halos

- Data
 Planck all-sky CMB map

SZE can probe gas contents in halos

- flux extraction
 - 1. matched filter:
 - maximize S/N for given data
 - fixed filter shape to determine amplitude (shape: Arnaud+10 (tSZ) beta-profile (kSZ)
 - 2. simultaneous matching: automatically accounts for
 - contamination along line-of-sight

tSZ result don't follow self-similar case

· · ·

kSZ result indicate no missing baryon

Combining tSZ & kSZ, baryons are there, but at low temperature

But, how robust against methods?

Different methods

- aperture photometry vs. matched filter
- how to identify halos
- simultaneous vs. individual matching
- different profiles adopted
- resolutions of surveys
- ... led to different conclusions
- \rightarrow while visiting MPA,
 - : test the methods using simulations

Extension to gas outside halo

(Lim et al. 2018b)

Probing IGM with tSZ and density field

 Pressure – density relation 1. SDSS volume into (1Mpc/h)^3 cells 2. density of cells reconstructed using group catalog & halo profiles 3. assume power-law P-rho to assign P 4. smooth and integrate P to obtain y 5. seek for power-law that best-matches observed y-map \rightarrow P - rho anywhere in the volume

IGM roughly follows adiabatic EOS

tidal field dependence is due to AGN feedback?

Gas in halos from SZE : no missing baryon in halos but in low temperature : signals from low-mass halos are yet method-sensitive Gas in from halos to diffuse regions from tSZE : pressure – density relation over three orders of magnitude in density (roughly follows adiabatic EOS) : regions of higher tidal field show higher thermal energy possibly due to AGN feedback \rightarrow can provide constraint

Supplements

tSZ results are robust for log Mh>13

-

kSZ detections are at 4-5 sigma level

Mock groups

Membership assignment

fc = Ntrue / Ntot fi = Nnon-true / Ntot

1.0(c) 0.9 ۱۱ 0.8 Гц 2MRS 0.7 0.61.0ြာ 0.9 ۸I 0.8 Гц 2dFGRS 0.7 0.6 0.0 0.2 0.4 0.6 0.8 1.0

prep

Table 3. A summary of group catalogs.

Catalog	Total galaxies	Total groups ^a	Total groups	$N^b=1$	$N \geqslant 2$	$M_h \geqslant 10^{14} {\rm M_{\odot}}/h$	$M_h \geqslant 10^{13} {\rm M}_\odot/h$
			with mass				
2MRS(L)	43, 249	30,937	18,650	13, 311	5,339	982	6,836
2MRS(M)	43, 249	31,752	19,224	13,913	5,311	1,016	7,156
2MRS+(L)	44,310	31,804	18,731	13,275	5,456	984	6,877
2MRS+(M)	44,310	32,693	19,307	13,923	5,384	1,014	7,211
6dFGS(L)	62,987	46,676	17,907	11,126	6,781	1,004	6,919
6dFGS(M)	62,987	47,176	18,555	11,789	6,766	1,045	7,291
6dFGS+(L)	73, 386	59,515	21,481	14, 168	7,313	1,154	8,030
6dFGS+(M)	73, 386	59,512	22,223	15,278	6,945	1,191	8,459
SDSS(L)	586,025	446, 495	165, 538	112, 444	53,094	3,757	39,565
SDSS(M)	586,025	421,715	167,638	105,979	61,659	3,780	43,880
SDSS+(L)	600, 458	453, 927	164, 694	107,066	57,528	3,712	39,464
SDSS+(M)	600, 458	426,932	166, 999	101, 518	65,481	3,760	43,649
2dFGRS(L)	180,967	144,965	77,423	62, 101	15,322	606	8,526
2dFGRS(M)	180,967	145,756	77, 365	61,309	16,056	632	9,116
2dFGRS+(L)	189, 101	147,757	77,861	59,606	18,255	634	8,553
2dFGRS+(M)	189, 101	148, 290	77,757	58,909	18,848	638	9,099

Notes.

a This includes groups without halo mass assigned because halo mass is not complete at given redshift.

b The number of member galaxies in a group. This excludes groups without halo mass assignment.

Group census