Probing the IGM during Reionization with line cross-correlations

Caroline Heneka Scuola Normale Superiore, Pisa

Intergalactic Interconnections, July 12th 2018, Marseille

based on: CH, Cooray, Feng, ApJ, 848 (2017), CH & Mesinger in prep.

Introduction

What astrophysics at play during Reionization?

Lines like Lya, Ha, .. (galaxies) and 21cm complement each other:

What are properties of the cross-signal? Is the cross-signal measurable? Typical ionising sources during the EoR?

+CII intensity mapping: CONCERTO (Dumitru+18), CCAT-prime (Parshley+18) +LOFAR 21cm upper limits (Patil+17) +21cm-LAE cross-correlation (Sobacchi+16, Hutter+16, 18) +Lyα intensity mapping during reionization (Silva+13, Heneka+17) +Intensity mapping Hα, Lyα, OII, CO, .. at z<5 (Fonseca+16, Gong+17)

Reionization

Image Credit: <u>http://firstgalaxies.org/aspen_2016/</u>

Introduction

What is the structure of the Universe? What are properties of galaxies / ionising sources? ...?

To find out, we can identify individual sources of emission (e.g. LAE).

Image Credit: <u>http://firstgalaxies.org/aspen_2016/</u>

Image: Courtesy of Asantha Cooray

Introduction

What is the structure of the Universe?

What are properties of galaxies ionising sources? ...?

To find out, we can identify individual sources of emission (e.g. LAE).

OR

We can sum all the emission in large areas and measure fluctuations (IM).

Image Credit: <u>http://firstgalaxies.org/aspen_2016/</u>

Image: Courtesy of Asantha Cooray

Cross-correlations: Line intensity mapping

Image Credit: http://firstgalaxies.org/aspen_2016/

Simulations: neutral - 21 cm

Offset 21-cm brightness temperature δT_b

$$\delta T_b \left(\nu \right) = \frac{T_S - T_\gamma}{1 + z} \left(1 - e^{-\tau_{\nu_0}} \right)$$
$$\propto x_{HI} \left(1 + \delta_{nl} \right) \left(\frac{H}{\mathrm{d}v_r/\mathrm{d}r + H} \right)$$

Fiducial Cosmology: Planck

Simulations: Lya fluctuations

Simulations: Lya fluctuations

Is this measurable? - The future

Also: SPHEREx NASA Small Explorer All-sky near-IR spectral survey

 λ = 0.75-4.1 μm; R=41.5 λ = 4.1-4.8 μm; R=150

Summary paper: Cooray et al. 2016

Cosmic Dawn Intensity Mapper (CDIM) Spectro-imaging of the Universe

- Legacy applications with 21-cm background
- Ideal wavelength coverage and high sensitivity to detect the EoR integrated galaxy intensity signal
- Multiple bands enable correlation tests sensitive to redshift history

Resolving Power and Wavelength Coverage : $\lambda = 0.75 - 7.5 \,\mu m$ R = 300 pixel size 1" survey size 300° (30°)

Ha X 21cm (SKA)

(a) Also suitable for crosscorrelation with 21cm

(b) Correlation neg. at small k, pos. at large k

(c) Single out dust (globally)?

Lya X Ha

(a) Different tracers for overdensities / galaxies

(b) As expected: positive correlation on all scales

(c) Distinguish e.g. IGM contribution for Lya

Other lines: Ha

CH+ ApJ, 848 (2017)

Back to: Introduction

What is the structure of the Universe? What are properties of galaxies / ionising sources? ...?

To find out, we can identify individual sources of emission (e.g. LAE).

Image Credit: <u>http://firstgalaxies.org/aspen_2016/</u>

Image: Courtesy of Asantha Cooray

'LAE' X 21cm (SKA)

Simulations: LAE at z=6.6

21-cm - LAE cross-correlation

Heneka & Mesinger 2018 in prep.

Conclusion

Synergy of 21-cm, Lya and Ha signal (IM and LAE)

- Expected to be less prone to systematics
- Signal is measurable
- Determine structure of the IGM
- Distinguish sources driving reionization

Forecast for upcoming and ongoing experiments

E.g. luminosity functions measured with IM as input for galaxy formation

<u>caroline.heneka@sns.it</u>

Conclusion Thank you!

Synergy of 21-cm, Lya and Ha signal (IM and LAE)

- Expected to be less prone to systematics
- Signal is measurable
- Determine structure of the IGM
- Distinguish sources driving reionization

What else to learn? Other lines?

Forecast for upcoming and ongoing experiments

E.g. luminosity functions measured with IM as input for galaxy formation

