

Connecting the CGM from strong absorbers with galaxy dark matter halos

Lise Christensen DARK, NBI, University of Copenhagen

Collaborators: Henrik Rhodin, Palle Møller, Johan Fynbo

Intergalactic interconnection conference Marseille July 12, 2018

Absorption line tracers

Damped Ly α systems (DLAs)

- log N(HI) > 20.3
- Cold, neutral gas
- Robust metal measures

Sub-DLAs / Super - LLS

- 19.0< log N(HI) < 20.3
- Partly ionised
- More metal enriched (e.g. Kulkarni+2007)

Lyman limit systems (LLSs)

- 17 < log N(HI) < 19.0
- Ionized
- Trace overdensities
- Low metallicities (Becker+12; Fumagalli+11)

Absorption line – metallicities

Metal absorption line widths ΔV_{90}

relation

Som+15

Probing the CGM with quasar absorbers

Observations of dependence with radius :

- Gas covering fractions
- Cloud sizes
- Column densities
- Equivalent widths
- Metallicities
- Velocity offsets

Host mass dependence? Velocity dispersion (ΔV_{90}) as tracer ?

Finding the absorbers in emission

Many searches for the DLA host counterparts (non-exhaustive list.)

Galaxies associated with DLAs

Spectroscopic survey of DLA hosts

(Henrik Rhodin et al. 2018)

Impact parameter – disc sizes in (sub)-DLAs

Metal rich (sub) DLAs (at ~> 10% solar metallicity) at redshifts z = 0.1-3.1 Impact parameters : 0 – 50 kpc Stellar masses : log M* = 8 - 11

Rhodin +2018 (ArXiv/1807.01755) (model comparisons in Krogager+17; Freudling in prep.)

Probes of galaxy stellar masses

DLA system mass-Metallicity Relation

Radial metallicity gradient : -0.022 dex/kpc

Møller+13 ; Christensen +2014; Rhodin+2018 (ArXiv/1807.01755)

Probes of galaxy stellar masses

Stellar mass Tully-Fisher Relation

Kassin+07; Christensen+2017 Turner+2017

Proxies of stellar masses

- ΔV_{90} ~ velocity dispersion
- Affected by infall, # clumps, feedback
- Influence of impact parameter, halo mass ?

DLA host galaxy

DLA host: Stellar mass = 10^{10.3} Msun Halo mass = 10^{12.3} Msun Halo virial radius = 95 kpc Virial velocity = 250 km/s

Fynbo+13

Clouds bound to halos

No large (projected) velocity offsets - > likely gravitationally bound

(like OIV absorbers in COS-HALO (Tumlingson+11)

Scaling relations in the CGM with DLAs

ΔV₉₀ relation slope decreases by 1.55 dex in [M/H] per log km/s unit (Ledoux+2006)

M-Z relation : metallicity gradient [M/H] decrease by -0.022 dex/kpc (Christensen+14)

 ΔV_{90} should decrease with radius as: - 0.022 / 1.5 = - 0.015 [log km/s /kpc]

But what about the DM halos then?

Møller & Christensen in prep

Line of sight velocity dispersions

- 1) Assume a DM density profile
- Compute line of sight velocity dispersion, σ(R) (e.g. Dehnen 1993)
- 3) Choose a normalisation
- 4) Models include a 'scale radius'
 r_s (halo) mass dependent
 varies with redshift

Christensen+ in prep

Line of sight velocity dispersions

- 1) Assume a DM density profile
- Compute line of sight velocity dispersion, σ(R) (e.g. Dehnen 1993)
- 3) Choose a normalisation
- 4) Models include a 'scale radius'
 r_s (halo) mass dependent
 varies with redshift

Christensen+ in prep

Line of sight velocity dispersions

Absorption line velocities in simulations

Haehnelt+98: DLAs are 'protogalactic clumps' V_{90} correlated with DM halo $<\Delta V_{90} > ~ 0.6 V_{vir}$, 0.2-2.0 V_{vir}

Bird +15: + strong feedback $<\Delta V_{90} > ~ 0.9 V_{vir}$ $<V_{vir} >= 70 \text{ km/s}$

Pontzen +08 : Too few $\Delta V_{90} > 100$ km/s (also Razoumov 09)

Cen +12: no lack of high- V90 absorbers

Data: 24 DLAs with hosts M* known - > M_{halo} -> V_{vir}

Summary

- Mass-metallicity relation exists for DLAs
- Radial metallicity gradient = -0.022 dex/kpc to ~ 12 kpc
- z_{em} z_{abs} below escape velocities gravitationally bound
- $\Delta V_{90} / \sigma$ decrease with impact parameter
- ΔV_{90} trace potential wells and probe galaxy halos
- Velocities may be higher than expected for infalling material → Starburst driven outflows

To do : Zoom-in simulations of more massive halos dependence of V₉₀ with M* and impact parameters?