

Exploring the z~2-3 Cosmic web with 3D Lyman-alpha Forest absorption tomography

Intergalactic Interconnections @ Aix-Marseille Université July 9, 2018

> Khee-Gan (''K.-G,'') Lee Kavli IPMU, Kashiwa, Japan @kheegster, **%icq** #27393124

Collaborators: **Alex Krolewski (Berkeley grad student),** Martin White (Berkeley), Joe Hennawi (UCSB), David Schlegel (LBNL),, Xavier Prochaska (UCSC), John Silverman (IPMU), Nao Suzuki (IPMU), Peter Nugent (LBNL), Zarija Lukic (LBNL)

Tomographic Reconstruction of 3D Absorption

Going beyond quasars for Ly- α forest

COSMOS LYMAN-ALPHA MAPPING AND TOMOGRAPHY OBSERVATIONS (CLAMATO)

- Keck survey on COSMOS field (10hr, +02deg)
- Aim to get spectra LBGs+QSOs at z~2-3, to sample 2.1 < z < 2.5 Ly-a forest with sightline separations of ~2.5h⁻¹Mpc
- First systematic use of galaxies as Lyα forest background sources
- 2-4hr integrations with Keck-I/LRIS spectrograph down to g<24.8
- ~60hrs on-sky observations so far

Current Status: 230 sightlines over 27' × 21' area (0.17 deg²), covering 2.05 < z < 2.55 with mean transverse separation $d_{\perp}=2.4h^{-1}Mpc$

30 h⁻¹Mpc

Ly α of background source

Color scheme: **spectrum**, noise vector, spectral template

Wiener Filtering Of Sightlines

• We have the flux δ_{F} , pixel noise, and their [x,y,z] positions. Estimate map, **M**, using Wiener filter applied to data D and noise matrix **N**

$\mathbf{M} = \mathbf{C}_{MD} \cdot (\mathbf{C}_{DD} + \mathbf{N})^{-1} \cdot D$

• Assume a correlation matrix of the form $C_{DD}=C_{MD}=C(r_1,r_2)$

$$\mathbf{C}(\mathbf{r_1}, \mathbf{r_2}) = \sigma_F^2 \exp\left[-\frac{(\Delta r_{\parallel})^2}{2L_{\parallel}^2}\right] \exp\left[-\frac{(\Delta r_{\perp})^2}{2L_{\perp}^2}\right]$$

• $L_{\parallel}=2.5h^{-1}Mpc$ and $L_{\perp}=2.0h^{-1}Mpc$ are set by the sightline separation and resolution, $\sigma_{F}=0.8$ is the variance of the map

CLAMATO IGM Survey at z~2.3 (Keck-I)

Slice #12: 150.272 < RA (deg) < 150.301

Lee et al, 2017

DEEP2 Redshift Survey at z~I (Keck-II)

Coil et al, 2004

340 Mpc/h along LOS (2.05>z<2.55), 21 Mpc/h x 27 Mpc/h transverse

YouTube: <u>http://tinyurl.com/clamatovid-v2</u>

First Detection Of Cosmic Voids At High-z

Krolewski, KGL, et al 2018, arXiv:1710.02612

- Most distant-known cosmic voids from galaxy redshift surveys are at z~0.9 (VIPERS Survey, Hawken+2016)
- Obvious coherent underdensities in the CLAMATO map at 2.05<z<2.55
- Search for voids in CLAMATO using simple "spherical underdensity" void finder (e.g. Stark, Font-Ribera, White, KGL, 2015)
- Found ~48 cosmic voids ranging with R>5 Mpc/h (work done by UC Berkeley grad student Alex Krolewski)

z~2 Void Characterization

- Cross-validation with 432 galaxies with spectroscopic redshifts show the IGM voids are underdense in galaxies at 6-sigma significance
 - Shuffle voids randomly N times to get expectation value for null detection
- Radius distribution is consistent with excursion set models
- Volume still too small to detect quadrupole; also need detailed modeling of continuum errors

Krolewski, KGL, et al 2018

'Titan' Overdensity At z~2.5

- z~2.4-2.5 superstructure discussed in Cucciati+2018 from VUDS spectroscopic survey (arXiv:1806.06073)
- Spans >100 cMpc and potentially a progenitor of $\sim 3 \times 10^{15}$ M $_{\odot}$ present-day cluster
- Clearly see excess Ly-alpha absorption in same region, but galaxy and Ly-alpha absorption don't match up exactly:
 - Boundary effects in CLAMATO
 - Intracluster medium pre-heating suppresses Ly-alpha absorption?

Figures courtesy of Olga Cucciati

A forming supercluster at z=2.51?

- Known galaxy protoclusters at z=2.44 (Diener+2015, Chiang+2015), z=2.48 (Casey+2016) and z=2.51 (Wang+2016) are <100 cMpc from each other.
- CLAMATO is resolving real filamentary sub-structure at z~2.5!

Inferring Map Initial Conditions

- Simple log-normal model for Ly-a forest flux as function of density
- Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to minimize likelihood
- Inferred initial conditions (z=∞) can be used as a seed to run a sim to z=0 to infer fate of structures observed at z~2.5 with tomography
- Lead by B. Horowitz (UCB) and M.
 White(UCB)

"True" Initial Conditions

Toy "observations" at z~2.5

Inferred Initial Conditions

Inferred velocities at z~2.5

Galaxy-Forest Cross-Clustering

- Cross-correlate CLAMATO forest pixels with spectroscopic surveys in COSMOS field (with Andreu Font-Ribera, UCL)
- ~1500 galaxies at 2.0<z<2.6 within <15 Mpc/h transverse distance of at least 1 sightline, from zCOSMOS, VUDS, MOSDEF, ZFIRE, CLAMATO, 3D-HST
- Objective: assume that forest bias and beta is known to derive galaxy free parameters

Preliminary!

Cross-correlation with Galaxies

Use simple inverse variance estimator in configuration space (Font-Ribera et al 2012):

$$\xi_A = \frac{\sum_{i \in A} w_i \delta_{Fi}}{\sum_{i \in A} w_i}; w_i = \left[\sigma_F^2(z_i) + \frac{\sigma_{N,i}^2}{C_i^2 \bar{F}^2(z_i)}\right]^{-1}$$

- Overall ~21 σ detection from all samples
- Current analysis assumes forest bias is • fixed (known to \sim 3% from BOSS)
- Model galaxies with linear model. with • free parameters:
 - bias, b
 - LOS offset, δz
 - LOS dispersion, σ_z (combination of • redshift error + FoG)

ansverse

Lee, Font-Ribera et al., in prep.

Studying The High-Z Cosmic Web With IGM Tomography

- Lee & White 2016, ApJ, 817,160
- Krolewski, **Lee**, Lukic & White 2017, ApJ, 837,31
- Zel'dovich-like approach: eigenvalue analysis of the gravitational tidal tensor $d^2 \Phi/dx_i dx_j$
- tl;dr: IGM tomography provide good recovery the eigenvectors of the DM cosmic web
- With sufficient data volume, can constrain intrinsic alignments from galaxies at z~2-3

CLAMATO cosmic web

Future Surveys: Subaru-Prime Focus Spectrograph

- Simultaneously observe ~2000 targets over 1.3deg² FOV (c.f. Keck-LRIS: ~20 objects over 0.01 deg^2)
- Broadband wavelength coverage: 380nm-1.3 micron
- Proposed Subaru Strategic Program (SSP) proposal for ~300 nights covering:
 - Cosmology
 - Galactic Archeology
 - Galaxy Evolution
- Projected to begin survey operations in 2021

IGM Tomography in PFS Galaxy Evolution Survey

- 50 nights of the survey will be targeted at 2<z<7 universe
 - Area: 3 × 5 deg² fields
 - 970/deg² background sources at 2.5<z<3.5 (g<24.7)
 - I000/deg² of foreground sources at 2.2<z<2.6 for cross-correlation

Summary

- Ly-alpha forest using background LBGs lets us probe ~Mpcscale cosmic web at z>2
- CLAMATO Survey on Keck-I is now approaching ~0.2sq deg:
 - Unique view of a (possible) forming supercluster at z=2.5
 - First detection of cosmic voids at z>1 at 6 sigma confidence
 - Cross-correlation measurements with foreground MOSDEF, 3D-HST and VUDS galaxy redshifts
- High-z SSP survey (~50 nights) with Subaru PFS will map out large volumes over 15 sq deg starting 2021

IGM2018: Revealing Cosmology and Reionization History with the Intergalactic Medium

Kavli IPMU, Tokyo, Japan (2018 September 18-21)

http://ipmu.jp/igm2018

Scientific Organizing Committee

Martin Haehnelt Valentina D'Odorico Joe Hennawi Nathalie Palanque-Delabrouille Srianand Ragunathan Matt McQuinn Nao Suzuki Khee-Gan Lee

Credit: Girish Kulkarn

Confirmed Speakers

George Becker Christina Eilers Daniel Stark Michael Walther Matteo Viel Raul Monsalve Chen Heinrich Andrei Mesinger Benedetta Ciardi Andrea Ferrara

Emma Ryan-Weber

Fred Davies

Laura Keating

Andreu Font-Ribera

Naoki Yoshida