Intergalactic Interconnections, Marseille, 13th July 2018

The Prospects for IGM Cosmology in Future Surveys

Mat Pieri Laboratoire d'Astrophysique de Marseille

With Michael Blomqvist, Ignasi Perez Rafols, Debopam Som, Sean Morrison And the WEAVE-QSO and DESI-Lya teams

Mat Pieri, IGM-Inter, Marseille, 13th July 2018 The Big Questions

Q1: How do galaxies form their stars from intergalactic gas?

Circumgalactic Medium (CGM)

Q2: How does dark energy emerge to dominate the universe?

Q3: What is the nature of dark matter?

Q4: How does reionization occur?

Quasar Spectra and Lyman-& Forest

Quasar

Intergalactic medium

credit: Andrew Pontzen

O Line-of-sight probe of the IGM

- O Gas with $1 \lesssim rac{
 ho}{ar{
 ho}} \lesssim 10$
 - O traces dark matter on large scales
- O Largely photoionized O $au_{HI} \propto
 ho_{H}^{1.7}$ and $f = CF = Ce^{- au_{\rm HI}}$
- O Departures from this
 - O UV background modulation
 - O Strong lines
 - O Small scale physics
 - O metal absorption

Baryon Acoustic Oscillations

- A useful ruler on the sky measured in the CMB (Eisenstein et al 2005, Cole et al. 2005)
- O Trace expansion over time
- O BIG ~100 Mpc/h comoving
 - Measurable in quasar absorption

0

Q2: How does dark energy emerge?

Early

Mat Pieri, IGM-Inter, Marseille, 13th July 2018 SDSS-III/BOSS: 1st Probe of Dark Energy at High Redshift

BOSS Survey

- 1st measurement of high-z expansion with `standard ruler' results
 - Most precise measurement of Hubble parameter
 - LSS from both absorption alone and 'multi-tracer' with guasars

Latest results

- 2.3 sigma tension with Planck assuming standard model
- Sign of dynamical dark energy?

Slosar+ 2011, Busca+ 2013, Pieri 2014, Delubac+ 2015, Bautista+ 2017, dMd Bourboux 2017, Blomqvist 2018

Q1: How do galaxies form from IGM?

Mat Pieri, IGM-Inter, Marseille, 13th July 2018

Composite Spectra of the IGM in BOSS

- Stacking of strong Lyman-α (and damped Lyman-α)
- Metallicity, UV background, abundance pattern, physical conditions
- Absorption proxies for galaxies
 - ~500 000 CGM regions
 - Near-solar metallicities and ~30 pc clumping
- How do such small clumps occur?

Exotic circumgalactic

Combined Dark Energy and Galaxy Formation

Beginning to address both science goals with a single measurement

Blomqvist, MP et al in prep

For further strong progress we need a data revolution...

Wide Extragalactic Surveys

Quasar absorption with Lyman-α at z > 2

Diffuse Baryons BOSS, eBOSS, WEAVE/J-PAS, DESI, 4MOST

Emission sensitivity limited to z < 1

Galaxies BOSS, DES, eBOSS, **HETDEX, J-PAS**, WEAVE, PFS, DESI, 4MOST, Euclid, LSST, WFIRST

CGM at z > 2 Star Formation Rate Peak

Multi-tracer Large-scale Structure

Better sampling for a cosmic web map

2009

Neutrinos, Dark Matter & Reionization

- O Small scale structure in forest reflect various contributions from
 - O Sum of neutrino masses
 - Nature of dark matter (warm/mixed/sterile neutrinos/ quantum)
 - O Thermal imprint of reionization
 - O IGM astrophysics e.g. outflows
- O Spectral resolution is key and improvement reduces model

Yeche+17

BOSS data used but spectral resolution marginal and dependent on hydro sims

The Growth of Massive IGM Surveys

Surveys of I<z<2.1 QSOs

Mat Pieri, Fundamental Cosmology, Barcelona, 16th June 2016

Growth of Massive IGM Surveys: DESI

- O Mayall (4m) Kitt Peak Arizona, USA
- O Resolution R=2000, 14k deg²
- O Photometric selection
- O 5000 robotic fiber positioners
- O 4 x 15 min. I pass for ID and 3 additional for S/N
- O 700k high-z (Lyα forest) quasar spectra
- O I.4M intermediate-z quasar spectra
- O 20M+ galaxies with z<1.6
- Potential to cross-correlate quasars, ELGs and carbon absorption at z~1.5
 - O Effectively ~6 BAO measurements

The WEAVE Survey

- O William Herschel 4.2-m telescope
- O 5 year survey starting in 2019
- O Likely extension to 7-8 years
- Pick and place, drum roll system setting min observation time of ~Ihr
- O Buy-in free collaboration based on nation

Mat Pieri, IGM-Inter, Marseille, 13th July 2018

WEAVE-QSO

- High resolution massive IGM survey (MP et al 2016)
 - O Spectral res 2x or 10x BOSS and DESI
 - Spatial res quasar number density: 4-5 x
 BOSS ~2 x DESI
- O Total area in 5 years ~6000 sq deg
 - O High spectral resolution small Gaia targeted sample (to r=21)
 - High spatial resolution coming from J-PAS target selection efficiency (to r=23.2)
- O J-PAS key to WEAVE-QSOs science

IGM Tomography in WEAVE

- O WEAVE alone reaches
 - O ~10 Mpc resolution on average
 - O ~I Mpc when QSOs clustered
- Combination with HETDEX (+ J-PAS)
 - O potential to measure IMpc
 - Lyman-α emitter galaxy CGM regions

The Goal: Complete picture of galaxy and gas properties in environment

 σ_{lpha}

Future BAO Projections with High/Low z-Split

 σ_{lpha}

Quasar Target Selection with J-PAS

Quasar Target Selection with J-PAS

- Unbiased samples quasars of through J-PAS pseudo-spectroscopy
 - O Address quasar contribution to (re)ionization epochs
- Expected near 100% completeness and efficiency to r=23.2 for Lyman-α Forest QSOs
- O Various automated codes under development including ...

SQUEzEing all the Quasars out of a spectroscopic data

Get ready for the flood with Spectroscopic QUasar Extractor and redshift Estimator

- O Emission line strength metrics plus support vector machine learning
- O Demonstration on BOSS data:
 - O Perez-Rafols, MP et al in prep
 - O >95% complete and pure
- O Public code for eBOSS, WEAVE, J-PAS, DESI ...

Summary

- O Lots of exciting science to do with WEAVE and DESI
 - O Two complementary BAO measurements
 - Address whether the Lyman-α Forest really does force a rethink on emergence of dark energy
 - Gas properties in a small and large scale context at the epoch of the star formation rate peak
 - O Mostly unbiased quasar samples down to r=23.2
- O Large samples require automated target selection and catalogue building

