The unforeseen IGM

constraining Cosmic Reionization through quirks of the inter-galactic medium

Enrico Garaldi | Bonn University

@enreecog

Michele Compostella, Cristiano Porciani, Nickolay Gnedin, Piero Madau

The standard reionization model

Sources: star-forming galaxies

- predicted by galaxy formation models & simulations
- observed up to $z \sim 11$ (Oesch et al. 2016)
- uncertain properties (mainly f_{esc})

(e.g. Ma et al. 2015, Grazian et al 2015, Bouwens et al. 2015, Vanzella et al. 2010, Izotov et al. 2016, Rutkowski et al. 2017 and many more..)

Sources: high-z quasars

- bright quasars (QSOs) are rare at z > 4
- faint QSOs may be more common (Giallongo et al. 2015, Chardin et al. 2016 but see Parsa et al. 2017, Onoue et al. 2017, Khaire 2017, BH progenitors?)

- If you are optimistic, they will do all the job! (Madau&Haardt 2015)

"We don't have large radiative-transfer simulations of QSOs reionization"

G. Worseck, ~20 mins ago

Part 1: Quasars at cosmic davvn

Garaldi, Compostella, Porciani, 2018, in prep.

"We need to go to 100 Mpc box with large frequency coverage and (possibly) non-equilibrium solvers."

G. Worseck, ~21 mins ago

Simulating the QSOs at Cosmic Dawn

Hydro + radiative-transfer (RAMSES + RADAMESH)

- 4 x 100 Mpc/h boxes
- Planck cosmology
- Multi-species, multiwavelength (1-40 ryd)
- Non-equilibrium
- QSO abundance matching

Garaldi *et al.* 2018, *in prep.*

Validation

Good match with analytical predictions.

HI and HeII reionization are very close in time.

Garaldi et al. 2018, in prep.

Enrico Garaldi, IAUS 333

Validation

Garaldi et al. 2018, in prep.

Enrico Garaldi, IAUS 333

(Too) early Helium Reionization

The IGM is heated at z~5.5 by HI and HeII simultaneously

Garaldi et al. 2018, in prep.

Low Hell Ly-a optical depth

Enrico Garaldi, Marseille 2018

QSOs as sources of IGM dark regions?

Garaldi et al. 2018, in prep.

Early QSOs may explain the obscured IGM regions observed at z > 5

See Bosman+2018 for recent observations

Enrico Garaldi, Marseille 2018

QSOs as sources of IGM dark regions?

Garaldi et al. 2018, in prep.

Early QSOs may explain the obscured IGM regions observed at z > 5

Can we gauge the QSO contribution?

Gauging QSOs: Hell Ly-alpha forest

Part 2: Properties of the high-z IGM

POPER INTRACTOR

Garaldi, Gnedin, Madau, in prep.

7 high-z spikes within a GP trough

Cosmic eionization 01 Computers

CROC simulations

Hydro & RT coupled

40 Mpc/h box

Random LOS at 6.5 < z < 5

Garaldi *et al., in prep.*

Strong redshift evolution of the IGM properties

Peaks are produced by underdense regions *with a bright source nearby*

The underlying IGM – correlations

Probing the sources of reionization

Garaldi *et al., in prep.*

P.P.F.F.F.M.I.N.R.R.F. Correlation between flux and nearby galaxies/ QSOs is a powerful probe of reionization sources

(see Kakiichi's talk for an observational perspective)

Enrico Garaldi, Marseille 2018

Summary

- QSOs-only reionization very unlikely (early HeII reionization \rightarrow wrong T0, optical depth)
- High-z QSOs may explain the obscured IGM at z > 5
- High-z QSOs contribution can be constrained by the HeII Lyα forest even at z < 3.5
- High-z Lyα spikes are produced by underdense, highly-ionized IGM
- High-z spikes are a powerful probe of the sources of reionization

۴.

- 1**2**5