Connecting the Dots: Stacking the Cosmic Web in Lya Emission with MUSE & EAGLE

Sofia G. Gallego, Sebastiano Cantalupo, Simon Lilly & MUSE Collaboration

Outline

★Introduction on IGM detection

★Galaxy Sample Selection & Oriented Stacking Procedure

★Results from MUSE stacking analysis

★Constraining IGM-galaxy connectivity and the UVB with simulations

★Summary

How can we detect the IGM in Ly α ?

Emission

How can we detect the IGM in Ly α emission?

The CGM/IGM around Quasars

Borisova+16

MUSE observations of QSOs at z~3.5: 100% detection rate of giant nebulae!

A 3D view of the Muse Quasar Nebula 3 (MQN03)

IGM Ly α emission away from Quasars?

- If filaments are LLS their Lya emission constrains the UV Background (UVB)
- Expected surface brightness (SB) from UVB fluorescence
 1.14x10⁻²⁰ erg/s/cm²/arcsec² (z=3.5)
- Current available observations are not deep enough to reach those limits
- Simulations show filaments connecting galaxies
- Oriented stacking along galaxies increase S/N and may show filamentary emission

Galaxy Sample Selection & Stacking Procedure

- Lyman alpha emitters (LAEs) selected from the MUSE deep fields HDFS (89, ~26 hrs) + UDF10 (158, ~29 hrs)
- Select LAEs with a "neighbor" within 0.5 < cMpc < 20, θ > 16" and 2.9 < z < 4 (390)
- Obtain subcubes around those LAEs reoriented in the direction of the close neighbor

Example of Neighbor-Oriented Ly α Narrowband Images

Oriented Stacking

Stack - Random Orientations

Gallego+18

SB profile along direction of neighbors

Excess of Oriented Emission at CGM scales

~3.5 sigma excess over random orientations 20 kpc < θ < 30 kpc.

Gallego+18

What is the Origin for the oriented CGM emission?

Sample with more neighbors

Satellite galaxies

CGM assymetries*

- Galaxy fluorescence
- Lya scattering from the central galaxies

*Imply statistically higher densities toward neighbors (0.5 < d < 20 cMpc)!

What does the lack of emission imply at IGM scales?

- i) UVB is a factor of 3 or more below expectations at z~3.5 (very unlikely), OR
- ii) IGM filaments are not LLS, OR
- iii) Not all galaxy pairs have filaments (f_{conn} < 1)

What are the galaxy properties that increase our chances of detecting the Cosmic Web?

Can we contrain both the number of galaxies connected by LLS filaments f_{conn} and the brightness of the UVB?

Simulations: EAGLE

- ◆ Ref-L0025N0752
- ◆ 25 cMpc³
- ♦ 3 snapshots from 3 < z < 4
- from 0.16 to 0.19 arcsec/pixel (similar to MUSE!)
- ✦ FoV from ~114 to ~213 arcmin²

SB mock cube

Gallego+ in prep

- Produce mock cubes from simulations
- Apply same selection criteria of Gallego+18 on the EAGLE galaxy catalog

Steps:

Constraints on fconn

Constraints on the UVB

\star Total f_{conn} from our full sample ~0.09

★SB upper limit (2σ SB limit / f_{conn}) = 4.89 x 10⁻²⁰ erg/s/cm²/arcsec²

Marseille 2018

Summary

- ★ We performed an oriented stacking of LAEs in the direction of neighbouring galaxies with MUSE at z~3.5 (Gallego+18).
- ★ Excess of emission is found on CGM scales (<30kpc), it seems stronger for LAEs with more neighbours and independent of other galaxy properties (luminosity, redshift, distance to neighbours).

 \rightarrow Satellites, galaxy fluorescence or Ly α scattering?

- ★ No emission is found at IGM scales (>30 kpc) with a 2σ SB limit of 0.44 x 10⁻²⁰ erg/s/cm²/arcsec².
- ★ Using Gallego+18 results in combination with EAGLE constraints, we obtain the covering fraction of LLS $f_{conn} \sim 9$ % and an upper limit of the photoionisation rate at z~3.5 of $\Gamma_{HI} < 2.35 \times 10^{-12} \text{ s}^{-1}$.
- ★ Next step: improve our sample selection with EAGLE to improve UVB constraints and possible to detect IGM filaments

