Tracking down reionization (using the IGM thermal history)

Elísa Boera (UCR)

G. Becker (UCR) J. Bolton (Uní. of Nottingham)

Intergalactic interconnections, 12 July 2018, Marseille

Which are the imprints of reionization?

The imprints of photoheating

2) Smoothing out of the gas in physical space by increased gas pressure (Jeans smoothing effect)

Before

Jeans Smoothing = $f(integrated thermal history from <math>z_{rei})$

The integrated thermal history

Nasír et al. 2016

How can we constrain T_0 and u_0 ?

...looking at the absorption features of the Ly- α forest

The impact on the Ly- α forest

Real data

15 high resolution & high S/N, UVES & HIRES spectra

Boera et al. ín prep.

Simulations

Grid of self-consistent thermal histories calibrated using the real spectra: with a variety of u_0 and T_0 values

... from hydro dynamical simulations (10 h-1cMpc box)

 $T_{O}(z)$

 $u_{O}(z)$

A3 parameters model:

...a first step

Z_{reí}: redshift of instantaneous reionization

T_{reí}: IGM temperature after reíonization

α_{bk}: spectral index of the post reionization background

Results

Results: comparison with Planck

Conclusions

We have obtained a first constraint on the post reionization IGM integrated thermal history, measuring T_0 and u_0 from the high-z Ly- α power spectrum.

The integrated IGM thermal history allows to obtain information on the timing and sources of Reionization

Our preliminary results, based on simplistic models favour a Reionization driven by sources with a soft bkg spectral index , and are consistent with recent Planck results.

More sophisticated modelling will allow relevant $\frac{\delta h_{ank_{s/}}}{\delta h_{ank_{s/}}}$