Measuring small-scale structure in the IGM to constrain cosmology

- Lyman- α data used

- Constraint on \boldsymbol{v} mass
 - Constraint on warm dark matter

N. Palanque-Delabrouille CEA-Saclay

Intergalactic interconnections Marseille, July 2018

Lyman- α forest and cosmology

N. Palanque-Delabrouille, Marseilles, July 2018

Sloan Digital Sky Survey

- 2.5m telescope (New Mexico)
- 7 500 deg² (eBOSS) 10 000 deg² (BOSS)
- 1000 fibers

Matter tracers:

- 1M galaxies z<0.8
- 500k QSOs
 0.9<z<2.1

2010000000

 200k Lyα forests z>2.1

N. Palanque-Delabrouille, Marseilles, July 2, 18

BOSS 2009-2014

eBOSS 2014-2020

Lyman- α forest 1D power spectrum

Selection of ~14 000 out of 60 000 z>2.1 BOSS QSOs

Detailed study of contributions from

- detector (spectrograph resolution, noise)
- astrophysics (sky lines, correlation with other absorbers)

$$P_{Raw}(k) = [P_{Ly\alpha}(k) + P_{Ly\alpha-SiIII}(k) + P_{metals}(k)] \times W^{2}(k) + P_{Noise}(k)$$

N. Palanque-Delabrouille, marsennes, July 2018

Lyman- α forest 1D power spectrum

X-Shooter on the VLT XQ-100 program

100 QSOs at z ~ 3.5

SNR per pixel ~25 (vs. SDSS ~2) Resolution ~15 km/s (vs. SDSS: ~75 km/s)

N. Palanque-Delabrouille, Marseilles, July 2018

Lyman- α forest 1D power spectrum

N. Palanque-Delabrouille, Marseilles, July 2018

Measuring small-scale structure in the IGM to constrain cosmology

- Lyman- α data used

- Constraint on ν mass

- Constraint on warm dark matter

N. Palanque-Delabrouille CEA-Saclay

Intergalactic interconnections Marseille, July 2018

m_v & large-scale structures

 $m_v \sim eV \implies$ size of galaxy cluster perturbations smoothed out

N. Palanque-Delabrouille, Marseilles, July 2018

m_{ν} & large-scale structures

Different probes \Leftrightarrow different scales

- Suppression factor $\Leftrightarrow \Sigma mv$
- Suppression is z-dependent

o Ly- α - Small scales, max effect 🛛 🛖

- Large z-range [2.1; 4.5]

m_{ν} & large-scale structures

Different probes \Leftrightarrow different scales

- Suppression factor $\Leftrightarrow \Sigma mv$
- Suppression is z-dependent

o Ly- α - Small scales, max effect 🛛 🛖

- Large z-range [2.1; 4.5]

- Non-linear regime, flux (not mass) P(k) \Rightarrow Hydro simulations

Hydrodynamical simulations

Hydrodynamical simulations

Grid of simulations		parameter	central	range
→ 2na-order Taylor expansion for cosmo & astro parameters centered on Planck (2013)	Cosmology	keV/m _x	0.0	+0.2+0.4
		$\Sigma m_v / eV$	0.0	+0.4 +0.8
		h	0.675	±0.05
$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \sum \frac{\partial f}{\partial x_i}(\mathbf{x}) \Delta x_i$		Ω_M	0.31	±0.05
$\sum_{i} \partial x_{i}$	x_j	σ_{8}	0.83	±0.05
$+\frac{1}{2}\sum \sum \frac{\partial^2 f}{\partial x_i \partial x_i}(\mathbf{x}) \Delta x_i \Delta$		n _s	0.96	±0.05
		$dn_s/d\ln k$	0.00	±0.04
		Zreio	12	±4
	Intergalactic Medium Optical Depth	$N_{e\!f\!f}$	3.046	±1
		$T_0^{z=3} / K$	14,000	±7,000
		$\gamma^{z=3}$	1.3	±0.3
		A ^τ	0.0025	±0.0020
		η^r	3.7	±0.4

TGCC Bruyères-le-châtel

Hydrodynamical simulations

 $z = 15 \rightarrow 0$

3 species

- Baryons
- Dark matter -
- Neutrinos

Stars formed from baryons

Neutrino mass (Σm) or masses (m_i)?

M_{v} constraint

N. Palanque-Delabrouille, Marseilles, July 2018

Mv constraint

Measuring small-scale structure in the IGM to constrain cosmology

- Lyman- α data used

- Constraint on v mass
 - Constraint on warm dark matter

N. Palanque-Delabrouille CEA-Saclay

Intergalactic interconnections Marseille, July 2018

Sterile neutrino sector

Warm Dark Matter

Ly- α forest & WDM

High-z and high-k bins most constraining (more sensitive to linear regime cutoff)

Warm Dark Matter: thermal relic & NRP v_s

High-z and high-resolution bins have large constraining power (closer to linear case, more sensitive to sharp cutoff)

Data Set	BOSS z<4.1	BOSS z<4.5	BOSS + XQ100 + HIRES/MIKE
Lower bound on m _x (keV)	2.97	4.1	4.65 (z≤4.6) ¹ / 5.3 (z≤5.4) ²
Lower bound on m _s (keV)	16.1	24.4	28.8 (z≤4.6) ¹ / 34.1 (z≤5.4) ²

¹Yèche, NPD+ (2017) ²Irsic, Viel+ (2017)

Warm Dark Matter: thermal relic & NRP v_s

High-z and high-resolution bins have large constraining power (closer to linear case, more sensitive to sharp cutoff)

Data Set	BOSS z<4.1	BOSS z<4.5	BOSS + XQ100 + HIRES/MIKE		
Lower bound on m _x (keV)	2.97	4.1	4.65 (z≤4.6) 1 / 5.3 (z≤5.4) 2		
Lower bound on m _s (keV)	16.1	24.4	28.8 (z≤4.6) ¹ / 34.1 (z≤5.4) ²		
More conservative			More prone to systematics e.g. thermal history of IGM Garzilli+ (2017)		
Among the stuggest bounds to dote			Here broken power-law T(z) assumed, with break at z=3		
Among the strongest bounds to date In combination with X-ray data (m _s < 4 keV),		¹ Yèche, NPD+ (2017) ² Irsic, Viel+ (2017)			

Cold+Warm Dark Matter

Mixes with high-mass WDM or low WDM fraction are favored (more CDM-like)

Baur, NPD+ (2017)

Resonantly produced sterile neutrinos (Shi & Fuller, 1999)

Resonantly-produced sterile neutrinos

Using C+WDM \rightarrow non-resonant v_s mapping at T_{1D} level + 8 hydro simulations near coldest models for validation

Resonantly-produced sterile neutrinos

Conclusions

- Ly α is a powerful probe for cosmology
- Constraint on mass of active neutrinos
 - Sum of neutrino masses $\Sigma m_v < 0.12 \text{ eV}$ (95% CL) from Ly α +CMB
- Constraint on warm dark matter & sterile neutrinos (conservative BOSS only)
 - mwom > 4.1 keV (95% CL) for thermal relic
 - m_{sterile} > 24 keV (95% CL) for non-resonant production (NRP) NRP sterile neutrinos excluded by $Ly\alpha$ + X-ray
 - Interpretation of 3.5 keV X-ray line as v_s at odds with $m_{sterile}(RP)$ Ly α constraints
- Prospects
 - Improved mid-resolution data (full SDSS/BOSS in prep.)
 - Planck + DESI Ly α $\sigma(\Sigma m_v) = 0.039 \text{ eV}$
 - Planck + DESI Galaxy $\sigma(\Sigma m_y) = 0.024 \text{ eV}$

